中教数据库 > 西南大学学报(自然科学版) > 文章详情

改进的超限学习机及其在不平衡数据中的应用

更新时间:2023-05-28

【摘要】超限学习机(ELM)作为一种简单高效的学习算法被广泛应用于分类和拟合问题中.但是ELM在训练过程中逼近所有的样本容易造成过拟合,并且单个的ELM在不平衡数据分类上效果欠佳.因此,本文提出了一种新的基于分层交叉验证的集成超限学习机,该算法在训练阶段将集成学习和分层交叉验证相结合:①集成学习通过将若干个网络组合大大提高分类性能;②分层交叉验证最大程度学习样本的分布特点.基于KEEL数据库的不平衡数据分类问题的实验表明,新提出的算法更加稳定并且有更高的分类性能.

【关键词】

10 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号